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Nanodimensional pores of zeolite-Y (host) encapsulated
Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) complexes of unsaturat-
ed 16-membered octaaza–macrocycle (guest), 3,4,7,8,11,12,15,
16-octamethyl-1,2,5,6,9,10,13,14-octaaza[16]annulene ‘‘Me8-
[16]aneN8’’, were synthesized and characterized.

One of the most attractive properties of zeolites is their well
organized nanopores and nanochannels which serve readily as
supporting hosts for various molecules. Encapsulation of catalyt-
ically active transition-metal complexes inside the nanopores of
zeolites, ‘‘ship-in-a-bottle,’’ has been believed to be one of the
most promising strategies in the development of viable industrial
catalysts.1

In previous paper, we reported a series of complexes with
polyaza macrocyclic ligands, by the template condensation of di-
amine, formaldehyde, and amine in the presence of metal salt.2

In this paper, I have reported the synthesis and characterization
of metal(II) complexes of unsaturated 16-membered octaaza
‘‘Me8[16]aneN8’’ macrocycle ligands ‘‘3,4,7,8,11,12,15,16-
octamethyl-1,2,5,6,9,10,13,14-octaaza[16]annulene, [M(Me8-
[16]aneN8)](ClO4)2 (M = Mn(II), Co(II), Ni(II), Cu(II), and
Zn(II)),9 encapsulated within the nanocavities of Y-zeolite by
the template reactions of butane-2,3-dione dihydrazone with
biacetyl, [M(Me8[16]aneN8)]

2þ–NaY, shown in Scheme 1.7,10

Instrumental details for neat and encapsulated complexes are
the same as described earlier.3

The results of chemical analyses of the samples are given in
Table 1. The parent NaY zeolite has Si/Al molar ratio of 2.53
which corresponds to a unit cell formula Na56[(AlO2)56-
(SiO2)136]. The unit cell formulae of metal-exchanged zeolites
showed a metal dispersion of around 11 moles per unit cell
(MnNaY, Na33:2Mn11:3[(AlO2)56(SiO2)136].nH2O; CoNaY,
Na34Co11[(AlO2)56(SiO2)136].nH2O; NiNaY, Na33:8Ni11:1-
[(AlO2)56(SiO2)136].nH2O; CuNaY, Na34:4Cu10:8[(AlO2)56-
(SiO2)136].nH2O; ZnNaY, Na33Zn11:4[(AlO2)56(SiO2)136].
nH2O). The analytical data of each complex indicated M:C:H
molar ratios almost close to calculated for the mononuclear
structure. The Si and Al contents in metal-exchanged zeolites
and the zeolite complexes were almost the same as parent
zeolite. This indicate little changes in the zeolite framework
due to the absence of dealumination in metal ion exchange.
The X-ray diffraction patterns of zeolite-containing Me8[16]-
aneN8 complexes were similar to metal-exchanged zeolites
and the parent NaY zeolite. The zeolite crystallinity was retained
on encapsulating Me8[16]aneN8 complexes. The SEM photo-
graphs of the samples taken before Soxhlet extraction, showed
the deposition of complexes on the external surface. However,
the absence of extraneous materials in the SEM photographs

of finished products indicated the complete removal of surface
complexes, which could be accomplished by extended extraction
procedure.

Surface area and pore volume values estimated by the low-
temperature nitrogen adsorption at relative pressures (P=P0) in
the range 0.05–0.9 are given in Table 1. There was a drastic re-
duction of surface area and pore volume of zeolites on encapsu-
lating the metal complexes. Since the zeolite framework struc-
ture is not affected by encapsulation as shown by the XRD pat-
terns, the reduction of surface area and pore volume provides di-
rect evidence for the presence of complexes in the cavities.4

The infrared spectra of the complexes, ‘‘[Ni(Me8[16]-
aneN8)](ClO4)2’’ were all very similar to each other and support
the ligand structure proposed in Scheme 1. The IR bands of
zeolite-encapsulated transition metal complexes occurred at
the frequencies shifted within �5–10 cm�1 in comparison with
free complex; furthermore, some changes in band intensities
were observed in the region of the C=N stretching vibration.

Comparing the magnetic measurement obtained at room
temperature and electronic spectra (Table 1) of metal complexes
with square-planer M(II) Schiff-base tetraaza–macrocycle
complexes indicated that the octaaza–ligands of this study do
not differ significantly from the tetraaza–ligands with respect
to the ligand field strength.5 Bands due to zeolite encapsulated
metal(II) complex appeared at visible, and charge transfer bands
appeared in the near-UV region; these values were very similar
to the obtained values for the discrete neat complex.
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In summary, the results show that new square-planer octaaza
‘‘[M(Me8[16]aneN8)]

2þ’’ can be encapsulated in the nanodimen-
sional pores of zeolite by template condensation between pre-
entrapped [M(C4H10N4)2]

2þ complexes with biacetyl.
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Table 1. Chemical composition, magnetic and conductance data, UV–vis and DRS absorption, surface area, pore volume, and IR
stretching frequencies of neat and zeolite-encapsulateda

Sample C% H% N% M% C/N Si% Al% Na% Si/Al

�C=N
e

KBr

/cm�1

d$d/

cm�1 �B

�M
b

/S�1cm�2

mol

Surface

areac

/m2 g�1

Pore

volumed

/mL g�1

NaY — — — — — 21.76 8.60 7.50 2.53 — — — — 545 0.31

MnNaY — — — 2.58 — 22.08 8.73 3.34 2.53 — — — — 535 0.30

½Mn(Me4[16]aneN8)](ClO4)2 33.00 4.15 19.24 9.43 1.72 — — — — 1613 23,350b 1.78 265 — —

(32.76) (4.01) (19.35) (9.28) (1.69)

½Mn(Me4[16]aneN8)]
2þ–NaY 2.63 1.52 1.72 2.26 1.53 21.78 8.61 5.39 2.53 1607 23,640 — — 398 0.24

CoNaY — — — 3.71 — 21.53 8.53 3.36 2.53 — — — — 532 0.30

½Co(Me4[16]aneN8)](ClO4)2 32.77 4.13 19.11 10.05 1.71 — — — — 1614 22,670b 1.75 247 — —

(32.50) (3.96) (19.30) (9.86) (1.68)

½Co(Me4[16]aneN8)]
2þ–NaY 2.61 1.51 1.67 2.34 1.56 21.24 8.40 5.38 2.53 1609 22,930 — — 396 0.24

NiNaY — — — 3.72 — 21.79 8.62 3.28 2.53 — — — — 528 0.31

½Ni(Me4[16]aneN8)](ClO4)2 32.79 4.13 19.12 10.01 1.71 — — — — 1617 23,190b �0:04 253 — —

(32.51) (3.97) (19.28) (9.83) (1.69)

½Ni(Me4[16]aneN8)]
2þ–NaY 2.53 1.48 1.61 2.31 1.57 19.80 7.83 5.34 2.53 1610 23,460 — — 397 0.24

CuNaY — — — 3.86 — 21.48 8.49 3.28 2.53 — — — — 532 0.30

½Cu(Me4[16]aneN8)](ClO4)2 32.52 4.09 18.96 10.75 1.72 — — — — 1620 16,420b 1.77 249 —

(32.29) (3.83) (19.15) (10.51) (1.69)

½Cu(Me4[16]aneN8)]
2þ–NaY 2.50 1.43 1.67 2.81 1.50 21.07 8.33 5.33 2.53 1610 16,650 — — 397 0.24

ZnNaY — — — 3.96 — 22.30 8.83 3.32 2.53 — — — — 534 0.31

½Zn(Me4[16]aneN8)](ClO4)2 32.42 4.08 18.90 11.03 1.72 — — — — 1615 — — — — —

(32.21) (3.80) (19.11) (10.89) (1.69)

½Zn(Me4[16]aneN8)]
2þ–NaY 2.42 1.39 1.59 2.84 1.52 21.93 8.67 5.34 2.53 1611 — — — 404 0.25

aEstimated values are given in parentheses. bIn nitromethane solutions at at 25 �C unless otherwise specified. cSurface area is the ‘‘monolayer equivalent area’’ calculated as

explained in the Ref. 8. dCalculated by the t-method. eVibrational stretching of coordinated C=N.
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